224 research outputs found

    3D simulations of pillars formation around HII regions: the importance of shock curvature

    Full text link
    Radiative feedback from massive stars is a key process to understand how HII regions may enhance or inhibit star formation in pillars and globules at the interface with molecular clouds. We aim to contribute to model the interactions between ionization and gas clouds to better understand the processes at work. We study in detail the impact of modulations on the cloud-HII region interface and density modulations inside the cloud. We run three-dimensional hydrodynamical simulations based on Euler equations coupled with gravity using the HERACLES code. We implement a method to solve ionization/recombination equations and we take into account typical heating and cooling processes at work in the interstellar medium and due to ionization/recombination physics. UV radiation creates a dense shell compressed between an ionization front and a shock ahead. Interface modulations produce a curved shock that collapses on itself leading to stable growing pillar-like structures. The narrower the initial interface modulation, the longer the resulting pillar. We interpret pillars resulting from density modulations in terms of the ability of these density modula- tions to curve the shock ahead the ionization front. The shock curvature is a key process to understand the formation of structures at the edge of HII regions. Interface and density modulations at the edge of the cloud have a direct impact on the morphology of the dense shell during its formation. Deeper in the cloud, structures have less influence due to the high densities reached by the shell during its expansion.Comment: Accepted by A&A 03/11/201

    Fingering convection and cloudless models for cool brown dwarf atmospheres

    Get PDF
    This work aims to improve the current understanding of the atmospheres of brown dwarfs, especially cold ones with spectral type T and Y, whose modeling is a current challenge. Silicate and iron clouds are believed to disappear at the photosphere at the L/T transition, but cloudless models fail to reproduce correctly the spectra of T dwarfs, advocating for the addition of more physics, e.g. other types of clouds or internal energy transport mechanisms. We use a one-dimensional (1D) radiative/convective equilibrium code ATMO to investigate this issue. This code includes both equilibrium and out-of-equilibrium chemistry and solves consistently the PT structure. Included opacity sources are H2-H2, H2-He, H2O, CO, CO2, CH4, NH3, K, Na, and TiO, VO if they are present in the atmosphere. We show that the spectra of Y dwarfs can be accurately reproduced with a cloudless model if vertical mixing and NH3 quenching are taken into account. T dwarf spectra still have some reddening in e.g. J - H compared to cloudless models. This reddening can be reproduced by slightly reducing the temperature gradient in the atmosphere. We propose that this reduction of the stabilizing temperature gradient in these layers, leading to cooler structures, is due to the onset of fingering convection, triggered by the destabilizing impact of condensation of very thin dust.Comment: Accepted in ApJ

    Understanding star formation in molecular clouds I. Effects of line-of-sight contamination on the column density structure

    Full text link
    Column-density maps of molecular clouds are one of the most important observables in the context of molecular cloud- and star-formation (SF) studies. With the Herschel satellite it is now possible to determine the column density from dust emission. We use observations and simulations to demonstrate how LOS contamination affects the column density probability distribution function (PDF). We apply a first-order approximation (removing a constant level) to the molecular clouds of Auriga, Maddalena, Carina and NGC3603. In perfect agreement with the simulations, we find that the PDFs become broader, the peak shifts to lower column densities, and the power-law tail of the PDF flattens after correction. All PDFs have a lognormal part for low column densities with a peak at Av~2, a deviation point (DP) from the lognormal at Av(DP)~4-5, and a power-law tail for higher column densities. Assuming a density distribution rho~r^-alpha, the slopes of the power-law tails correspond to alpha(PDF)=1.8, 1.75, and 2.5 for Auriga, Carina, and NGC3603 (alpha~1.5-2 is consistent gravitational collapse). We find that low-mass and high-mass SF clouds display differences in the overall column density structure. Massive clouds assemble more gas in smaller cloud volumes than low-mass SF ones. However, for both cloud types, the transition of the PDF from lognormal shape into power-law tail is found at the same column density (at Av~4-5 mag). Low-mass and high-mass SF clouds then have the same low column density distribution, most likely dominated by supersonic turbulence. At higher column densities, collapse and external pressure can form the power-law tail. The relative importance of the two processes can vary between clouds and thus lead to the observed differences in PDF and column density structure.Comment: A&A accepted, 15.12. 201

    From Forced Collapse To H Ii Region Expansion In Mon R2: Envelope Density Structure And Age Determination With Herschel

    Get PDF
    The surroundings of H II regions can have a profound influence on their development, morphology, and evolution. This paper explores the effect of the environment on H II regions in the MonR2 molecular cloud. Aims. We aim to investigate the density structure of envelopes surrounding H II regions and to determine their collapse and ionisation expansion ages. The Mon R2 molecular cloud is an ideal target since it hosts an H II region association, which has been imaged by the Herschel PACS and SPIRE cameras as part of the HOBYS key programme. Methods. Column density and temperature images derived from Herschel data were used together to model the structure of H IIbubbles and their surrounding envelopes. The resulting observational constraints were used to follow the development of the Mon R2 ionised regions with analytical calculations and numerical simulations. Results. The four hot bubbles associated with H II regions are surrounded by dense, cold, and neutral gas envelopes, which are partly embedded in filaments. The envelope’s radial density profiles are reminiscent of those of low-mass protostellar envelopes. The inner parts of envelopes of all four H II regions could be free-falling because they display shallow density profiles: ρ(r) ∝ r− q with . As for their outer parts, the two compact H II regions show a ρ(r) ∝ r-2 profile, which is typical of the equilibrium structure of a singular isothermal sphere. In contrast, the central UCH II region shows a steeper outer profile, ρ(r) ∝ r-2.5, that could be interpreted as material being forced to collapse, where an external agent overwhelms the internal pressure support. Conclusions. The size of the heated bubbles, the spectral type of the irradiating stars, and the mean initial neutral gas density are used to estimate the ionisation expansion time, texp ~ 0.1 Myr, for the dense UCH II and compact H II regions and ~ 0.35 Myr for the extended H II region. Numerical simulations with and without gravity show that the so-called lifetime problem of H II regions is an artefact of theories that do not take their surrounding neutral envelopes with slowly decreasing density profiles into account. The envelope transition radii between the shallow and steeper density profiles are used to estimate the time elapsed since the formation of the first protostellar embryo, tinf~ 1 Myr, for the ultra-compact, 1.5−3 Myr for the compact, and greater than ~6 Myr for the extended H II regions. These results suggest that the time needed to form a OB-star embryo and to start ionising the cloud, plus the quenching time due to the large gravitational potential amplified by further in-falling material, dominates the ionisation expansion time by a large factor. Accurate determination of the quenching time of H II regions would require additional small-scale observationnal constraints and numerical simulations including 3D geometry effects

    Mopra CO Observations of the Bubble HII Region RCW120

    Get PDF
    We use the Mopra radio telescope to test for expansion of the molecular gas associated with the bubble HII region RCW120. A ring, or bubble, morphology is common for Galactic HII regions, but the three-dimensional geometry of such objects is still unclear. Detected near- and far-side expansion of the associated molecular material would be consistent with a three-dimensional spherical object. We map the J=10J = 1\rightarrow 0 transitions of 12^{12}CO, 13^{13}CO, C18^{18}O, and C17^{17}O, and detect emission from all isotopologues. We do not detect the 0011E0_0\rightarrow 1_{-1} E masing lines of CH3_3OH at 108.8939 GHz. The strongest CO emission is from the photodissociation region (PDR), and there is a deficit of emission toward the bubble interior. We find no evidence for expansion of the molecular material associated with RCW120 and therefore can make no claims about its geometry. The lack of detected expansion is roughly in agreement with models for the time-evolution of an HII region like RCW120, and is consistent with an expansion speed of <1.5kms1< 1.5\, {\rm km\, s^{-1}}. Single-position CO spectra show signatures of expansion, which underscores the importance of mapped spectra for such work. Dust temperature enhancements outside the PDR of RCW120 coincide with a deficit of emission in CO, confirming that these temperature enhancements are due to holes in the RCW120 PDR. Hα\alpha emission shows that RCW120 is leaking 5%\sim5\% of the ionizing photons into the interstellar medium (ISM) through PDR holes at the locations of the temperature enhancements. H-alpha emission also shows a diffuse "halo" from leaked photons not associated with discrete holes in the PDR. Overall 25±10%25\pm10\% of all ionizing photons are leaking into the nearby ISM.Comment: 35 pages, 14 figures. Accepted to Ap

    Age, Size, And Position Of H Ii Regions In The Galaxy Expansion Of Ionized Gas In Turbulent Molecular Clouds

    Get PDF
    Aims. This work aims to improve the current understanding of the interaction between H II regions and turbulent molecular clouds. We propose a new method to determine the age of a large sample of O ..

    Ionization Compression Impact On Dense Gas Distribution And Star Formation - Probability Density Functions Around H Ii Regions As Seen By Herschel

    Get PDF
    Aims. Ionization feedback should impact the probability distribution function (PDF) of the column density of cold dust around the ionized gas. We aim to quantify this effect and discuss its potential link to the core and initial mass function (CMF/IMF)

    Pillars And Globules At The Edges Of H Ii Regions: Confronting Herschel Observations And Numerical Simulations

    Get PDF
    Herschel far-infrared imaging observations have revealed the density structure of the interface between H ii regions and molecular clouds in great detail. In particular, pillars and globules are present in many high-mass star-forming regions, such as the Eagle nebula (M 16) and the Rosette molecular cloud, and understanding their origin will help characterize triggered star formation

    Near-Infrared Spectroscopy of the Y0 WISEP J173835.52+273258.9 and the Y1 WISE J035000.32-565830.2: the Importance of Non-Equilibrium Chemistry

    Get PDF
    We present new near-infrared spectra, obtained at Gemini Observatory, for two Y dwarfs: WISE J035000.32-565830.2 (W0350) and WISEP J173835.52+273258.9 (W1738). A FLAMINGOS-2 R=540 spectrum was obtained for W0350, covering 1.0 < lambda um < 1.7, and a cross-dispersed GNIRS R=2800 spectrum was obtained for W1738, covering 0.993-1.087 um, 1.191-1.305 um, 1.589-1.631 um, and 1.985-2.175 um, in four orders. We also present revised YJH photometry for W1738, using new NIRI Y and J imaging, and a re-analysis of the previously published NIRI H band images. We compare these data, together with previously published data for late-T and Y dwarfs, to cloud-free models of solar metallicity, calculated both in chemical equilibrium and with disequilibrium driven by vertical transport. We find that for the Y dwarfs the non-equilibrium models reproduce the near-infrared data better than the equilibrium models. The remaining discrepancies suggest that fine-tuning the CH_4/CO and NH_3/N_2 balance is needed. Improved trigonometric parallaxes would improve the analysis. Despite the uncertainties and discrepancies, the models reproduce the observed near-infrared spectra well. We find that for the Y0, W1738, T_eff = 425 +/- 25 K and log g = 4.0 +/- 0.25, and for the Y1, W0350, T_eff = 350 +/- 25 K and log g = 4.0 +/- 0.25. W1738 may be metal-rich. Based on evolutionary models, these temperatures and gravities correspond to a mass range for both Y dwarfs of 3-9 Jupiter masses, with W0350 being a cooler, slightly older, version of W1738; the age of W0350 is 0.3-3 Gyr, and the age of W1738 is 0.15-1 Gyr.Comment: Accepted on March 30 2016 for publication in Ap
    corecore